NOMBRE: GEOMETRÍA COMPUTACIONAL I

HRS./SEM.: 4 CLAVE: C7

Objetivo. Resolver eficientemente problemas geométricos en dos dimensiones, probar las cotas de complejidad de los algoritmos empleados.

Programa

- 1. Introducción a la Geometría Computacional. Terminología y herramientas básicas.
- 2. Polígonos y poliedros. Localización. Triangulación de polígonos. Aplicación a problemas de visibilidad.
- 3. Cierres convexos: de una nube de puntos y de polígonos. Aplicaciones: Diámetro, anchura, pares antipodales.
- 4. Triangulaciones de nubes de puntos. Triangulación de Delaunay. Problemas de proximidad.
- 5. Diagramas de Voronoi.
- 6. Arreglos de rectas. Dualidad.

Bibliografía

* M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf: "Computational Geometry, Algorithms and Applications". Springer, 1997.

* J. O'Rourke: "Computational Geometry in C". Cambridge Univ. Press, 1994 (Applets Java)

Técnicas de enseñanza sugeridas

Exposición oral	()	())
Exposición audiovisual	(,)
Ejercicios dentro de clase	()	())
Seminarios	(3)
Lecturas obligatorias	(3)
Trabajos de investigación	(j)
Prácticas en taller o laboratorio	Ì	j)
Prácticas de campo	(Ì)
Otras: Empleo de programas de cómputo	()	(ĵ)

Elementos de evaluación sugeridos

Exámenes parciales	(X)
Exámenes finales	(X)
Trabajos y tareas fuera del aula	(X)
Participación en clase	(X)
Asistencia a prácticas	()
Otras:	()