NOMBRE: LABORATORIO DE OPTICA.

HRS./SEM.: 4 CLAVE: F9

• **Objetivo:** Que el estudiante sea capaz de diseñar, planear y ejecutar experimentos en el área de Óptica, de manera creativa y original, verificando, comprobando o infiriendo los principios teóricos acerca de la naturaleza y propiedades de la luz. Que opere, además, adecuadamente el equipo de un laboratorio del área y que reconozca los problemas experimentales típicos en un laboratorio de esta área.

EXPERIMENTOS

- 1. *Las leyes de la reflexión y refracción*. Objetivo: Obtener experimentalmente las leyes de la reflexión y refracción de la luz entre la interfase de dos medios dieléctricos. Analizar el fenómeno de la reflexión total interna y su aplicación en la fabricación de fibras ópticas.
- 2. *Formación de imágenes por lentes*. Objetivo :Analizar la formación de imágenes por lentes. Obtener experimentalmente la Fórmula de Gauss.
- 3. *Formación de imágenes por espejos*. Objetivo: Analizar la formación de imágenes por espejos. Mostrar la equivalencia entre espejos y lentes.
- 4. Prismas. Dispersión de la luz. Objetivo: Estudiar las propiedades básicas de los prismas.
- 5. *Aberraciones de elementos ópticos*. Objetivo: Estudiar los principales tipos de aberraciones de los elementos ópticos.
- 6. *Polarización. Ley de Malus*. Objetivo: Analizar experimentalmente las propiedades de la polarización de la luz.
- 7. *Interferencia I. Experimento de Young*. Objetivo: Analizar el fenómeno de interferencia de frente de onda mediante el experimento clásico de Young.
- 8. Interferencia II. Interferencia de dos haces. Objetivo: Analizar el fenómeno de interferencia por división de amplitud mediante la interferencia de dos haces.
- 9. *Interferómetro de Michelson y de Fabry-Perot*. Objetivo: Estudiar los principios de operación de dos de los interferómetros más comunes, mostrando algunas de sus aplicaciones más importantes.
- 10. *Difracción de Fraunhofer*. Objetivo: Estudiar las características de la difracción de Fraunhofer mediante los patrones de difracción producidos por aberturas.
- 11. *Difracción de Fresnel*. Objetivo: Estudiar las características de la difracción de Fresnel mediante los patrones de difracción producidos por aberturas. Hacer notar la diferencia con respecto a la difracción de Fraunhofer.
- 12. Formación de imágenes: frecuencias espaciales y filtraje espacial. Objetivo: Estudiar de manera cualitativa la formación de las imágenes y la forma de manipular ópticamente las características de la imagen mediante el filtraje espacial.

Técnicas de enseñanza sugeridas

Exposición oral	(X)
Exposición audiovisual	(X)
Ejercicios dentro de clase	(·)
Seminarios	(·)
Lecturas obligatorias	()

Trabajos de investigación Prácticas en taller o laboratorio Prácticas de campo Otras:	(X) (X) (X)
Elementos de evaluación sugeridos	
Exámenes parciales Exámenes finales	()
Trabajos y tareas fuera del aula	(x)
Participación en clase	()
Asistencia a prácticas	(X)
Otras:	(X)

•